ON THE STEREOSELECTIVITY OF THE (–)-DIMENTHYL MALONATE ADDITION TO α,β -UNSATURATED KETONES

Lubomir SEBO^{*a*}, Juraj ALFOLDI^{*b*}, Grety RIHS^{*c*} and Stefan TOMA^{*a*1,*}

^a Department of Organic Chemistry, Comenius University, 842 15 Bratislava, Slovak Republic; e-mail: ¹ toma@fns.uniba.sk

^b Institute of Chemistry, Slovak Academy of Sciences, 842 15 Bratislava, Slovak Republic; e-mail: chempati@savba.sk

^c CIBA-GEIGY Co., CH-4002 Basel, Switzerland

Received March 18, 1996 Accepted September 23, 1996

The Michael addition of (–)-dimenthyl malonate to eight α , β -unsaturated ketones has been studied. The ratio of diastereomers was calculated on the basis of the ¹H NMR spectra of the crude reaction products. The diastereomer excess varied from 10 to 50%, depending on the structure of the starting enone. The pure diastereomer produced by addition of (–)-dimenthyl malonate to 2-benzylidene-1,4-indandione was isolated by repeated crystallization. X-ray analysis has shown that the isomer is (–)-dimenthyl (*R*)-2-[1-(1,3-dioxoindan-2-yl)-1-phenylmethyl]malonate (**5a**). The predominating diastereomers of (–)-dimenthyl(3-ferrocenyl-3-oxophenylpropyl)malonate (**1a**) and (–)-dimenthyl-2-(1-(1,3-dioxo[3]ferrocenophan-2-yl)-1-phenyl malonate (**6a**) were also isolated in pure state by careful crystallization. Key words: Michael addition; (–)-Dimenthyl malonate; Enones.

In our previous communications^{1,2} we have described the stereoselective Michael addition of achiral methylene active compounds (e.g. dimethyl malonate and malononitrile) to chiral tricarbonylchromium complexes of chalcones. One report³ describes an unsuccessful attempt to perform the Michael addition of (–)-dimenthyl malonate to 3-methyl-2-octen-1-one.

In the present study we examine diastereoselectivity of the (–)-dimenthyl malonate** addition to some reactive enones.

RESULTS AND DISCUSSION

Our study of Michael addition of (-)-dimenthyl malonate started with ferrocenyl enones 1 and 2 as we supposed that the resulting (coloured) diastereomers should be

^{*} The author to whom correspondence should be addressed.

^{**(-)-}Menthyl instead of (1R, 2S, 5R)-(-)-menthyl is used throughout.

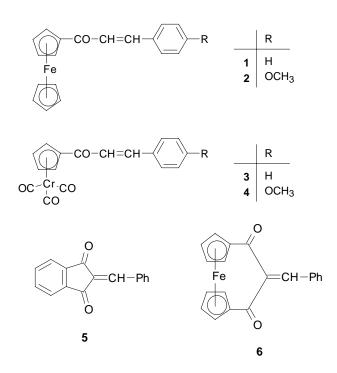
easily separable by chromatography. For the *p*-methoxyphenyl derivative 2 it was assumed that the diastereomers could be distinguished by different chemical shifts of the methoxy group. The attempted chromatographic separation, however, failed and in all experiments the diastereomer excess (d.e.) was determined using the ¹H NMR spectra.

As seen from Table I, the Michael addition of (–)-dimenthyl malonate to the ferrocenyl analogue **1** was satisfactory. The diastereomer ratio was determined from chemical shifts of the unsubstituted cyclopentadienyl (Cp) rings (singlets) in the diastereomers. Unfortunately, the methoxy derivative of chalcone **2** was unreactive and no product was detected by TLC even when the reaction was carried out at elevated temperature, with sodium methoxide or piperidine as catalysts.

In our further experiments we replaced the ferrocenyl moiety by η^6 -phenyltricarbonylchromium which is a strong acceptor⁴ and should activate the enones **3** and **4** in the addition. Both the complexes **3** and **4** gave the desired Michael adducts (Table I) in high yields. Unfortunately, the 300 MHz ¹H NMR spectra of the products were rather complex and no well separated signals of their CH(COO)₂, CHPh or CHO protons were obtained. For this reason, the diastereomer excess of **4a** was estimated (50%) from the OCH₃ chemical shifts.

TABLE I

Results of Michael addition of (-)-dimenthyl malonate to enones 1-8


 $C=CH-Ar + CH_2(COOmenthy I)_2 \longrightarrow -C-CH-Ar$

1-8		Ĥ ĊH(COOmenthyI) ₂ 1a-8a			
Enone	T, ℃	Time	Product	Yield, %	d.e., %
1	20	5.5 d	1 a	61	25
2	60	4 h	2a	0	_
3	20	3.5 h	3a	46	а
3	-20	13 h	3a	85	а
4	20	26 h	4 a	98	50
5	20	5 h	5a	97	34
5	-20	5 d	5a	95	49
6	20	18 h	6a	84	20
7	80	4 h	7a	72	10
8	20	18 h	8a	74	50

^a The ratio of diastereomers could not be determined on the basis of 300 MHz ¹H NMR spectra.

1806

We decided to examine the reaction of enones derived from cyclic 1,3-dicarbonyl compounds, i.e. derivatives of 1,3-indandione **5** and [3]ferrocenophane-1,3-dione **6**. Both reacted easily and the products were isolated in good yields. In both cases, the diastereomers were distinguished by well separated doublets of the CH(COO)₂ and CH(CO)₂ groups: the reaction of the ferrocenophane derivative **6a** resulted in 20% d.e. and that of the 1,3-indandione derivative **5a** in 34% d.e. To achieve higher d.e., compound **5** was reacted with (–)-dimenthyl malonate at –20 °C. This experiment gave 49% d.e. and crystallization of the product (**5a**) enriched the crystals in the major diastereomer. The ¹H NMR spectrum exhibited doublets at 3.74 and 4.79 ppm (minor isomer) and at 3.66 and 4.75 ppm (major isomer) due to the CH(COO)₂ and CH(CO)₂ groups, respectively. Three crystallizations from ethyl acetate–isohexane produced pure major diastereomer **5a**.

X-Ray analysis of the diastereomer 5a allowed us to assign the absolute configuration R at the newly formed asymmetric carbon atom (see Fig. 1). The key crystallographic parameters are given in Tables II–IV.

Similar diastereoselectivity has been described recently⁵ for the Michael addition of (–)-menthyl cyanoacetate to 2-cyano-1,3-diphenyl-2-propen-1-one.

Some reactions of tricarbonylchromium complexes are more selective than the same reactions on the corresponding free ligands^{6,7}. We therefore prepared tricarbonylchro-

1808

TABLE II Crystal data and parameters for compound 5a

Crystal size, mm	0.51 imes 0.19 imes 0.08
Crystal system	orthorhombic
Space group	$P2_{1}2_{1}2_{1}$
<i>a</i> , <i>b</i> , <i>c</i> , Å	8.828(1); 19.057(3); 21.913(3)
$V, Å^3$	3686(1)
Ζ	4
D_{calc} , g/cm ³	1.108
Radiation, Å	1.5418(CuKα)
Temperature, °C	23
θ range for data collection	3–75
Number of variables	406
Number of reflections measured	4 080
Number of reflexions with $I > 3\sigma(I)$	1 870
R, wR	0.040, 0.040
Weighting scheme	$w = 1/\sigma^2(F_{\rm o})$

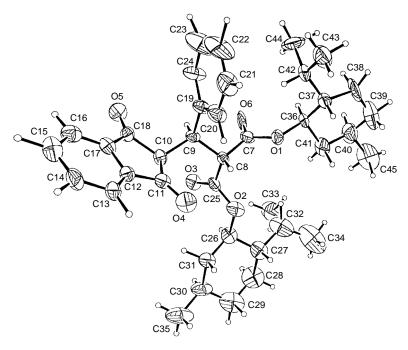
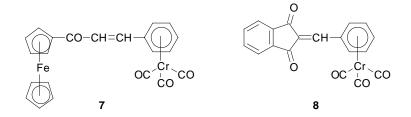



FIG. 1 ORTEP plot of the molecule **5a**

mium analogues of enones 1 and 5, i.e., complexes 7 and 8, and examined their reactivity. Interestingly, 50% d.e. was achieved for the addition of (–)-dimenthyl malonate to 8 (Table I) even when the reaction was carried out at 20 °C (34% d.e. was found for the addition to the free ligand 5). We conclude that one side of the enone is flanked by the large $Cr(CO)_3$ moiety whereas the other is easily accessible to the attack of the bulky nucleophile. The reaction of 7 with (–)-dimenthyl malonate was sluggish and an elevated temperature (80 °C) was required to achieve a reasonable yield. The low facial selectivity (10% d.e.) might be explained by dissonant interaction of both the bulky $Cr(CO)_3$ and FeCp groups. This explanation also accounts for the low reactivity of the enone 7.

EXPERIMENTAL

¹H NMR spectra of solutions in deuteriochloroform were measured using TESLA BS 487 80 MHz, Bruker AM 300 MHz or Bruker AMX 500 MHz instruments. Tetramethylsilane was used as the internal standard. Melting points were determined on a Kofler hot stage and are uncorrected. The starting enones were prepared using described procedures, **1** and **2** (ref.⁸), **3** and **4** (ref.⁹), **5** (ref.¹⁰) and **6** (ref.¹¹). The C=C double bond in enones **1–4** and **7** has the *E* configuration. (–)-Dimenthyl malonate was prepared as described in ref.³.

1-Ferrocenyl-3-(n⁶-phenyltricarbonylchromium)propenone (7)

Acetylferrocene (360 mg, 1.75 mmol) and η^6 -benzenetricarbonylchromium (423 mg, 1.75 mmol) were dissolved in methanol (5 ml). Sodium hydroxide (50% aqueous solution, 0.5 ml) was added and the reaction mixture was left to stand overnight at room temperature. The violet crystals of the product (468 mg, 66%) were separated and crystallized from ethyl acetate, m.p. 182–184 °C. For $C_{22}H_{16}CrFeO_4$ (452.2) calculated: 58.43% C, 3.57% H; found: 58.74% C, 3.48% H. ¹H NMR spectrum (80 MHz): 4.23 s, 5 H (Cp); 4.62 t, 2 H (H_β-Cp); 4.89 t, 2 H (H_α-Cp); 5.42 m, 3 H (C₆H₅Cr(CO)₃); 5.68 m, 2 H (C₆H₅Cr(CO)₃); 6.90 d, 1 H, *J* = 15.6 Hz (CH); 7.37 d, 1 H, *J* = 15.6 Hz (CH).

 $2-(\eta^6$ -Phenyltricarbonylchromium)methylene-1,3-indandione (8)

1,3-Indandione (230 mg, 0.9 mmol) was dissolved in methanol (7 ml) and a solution of η^{6} -benzaldehydetricarbonylchromium (423 mg, 1 mmol) in methanol (3 ml) was added. A small amount of piperidine (0.2 ml) was added and the reaction mixture was left to stand for 1 h at room temperature and then overnight at -28 °C. The black crystals (340 mg) were filtered off and the filtrate was evaporated to dryness. Chromatography of the residue on an SiO₂ column in ethyl acetate–isohexane gave

1810

TABLE III			
Atomic coordina	ates for	compound	5a

Atom	x/a	y/b	z/c	$U_{ m iso}$
01	-0.133(1)	-0.5458(5)	-0.6446(4)	0.0677
O2	0.132(1)	-0.5240(6)	-0.5272(5)	0.0746
O3	0.325(1)	-0.5669(6)	-0.5819(5)	0.0734
O4	0.062(1)	-0.7185(7)	-0.4939(5)	0.0990
05	0.364(1)	-0.7882(6)	-0.6607(5)	0.0932
06	0.080(1)	-0.5432(9)	-0.6944(6)	0.1061
C7	0.011(2)	-0.563(1)	-0.6518(7)	0.0728
C8	0.072(1)	-0.6080(8)	-0.6020(6)	0.0547
C9	0.143(2)	-0.6752(9)	-0.6296(6)	0.0579
C10	0.223(2)	-0.7226(8)	-0.5839(7)	0.627
C11	0.139(2)	-0.751(1)	-0.5285(7)	0.0661
C12	0.174(2)	-0.827(1)	-0.5244(9)	0.0622
C13	0.128(2)	-0.875(1)	-0.4818(8)	0.0772
C14	0.173(2)	-0.942(1)	-0.487(1)	0.0946
C15	0.266(2)	-0.963(1)	-0.535(1)	0.0972
C16	0.311(2)	-0.913(1)	-0.5783(7)	0.0885
C17	0.262(2)	-0.846(1)	-0.5731(8)	0.0623
C18	0.294(2)	-0.787(1)	-0.6142(7)	0.0641
C19	0.010(2)	-0.7188(9)	-0.6615(8)	0.0725
C20	-0.118(2)	-0.739(1)	-0.6306(7)	0.0984
C21	-0.233(2)	-0.775(1)	-0.660(1)	0.1261
C22	-0.208(4)	-0.790(2)	-0.722(2)	0.1496
C23	-0.078(3)	-0.774(2)	-0.752(2)	0.1649
C24	0.029(2)	-0.735(1)	-0.721(1)	0.1025
C25	0.194(2)	-0.5660(9)	-0.5702(8)	0.0669
C26	0.233(2)	-0.485(1)	-0.4893(8)	0.0765
C27	0.158(2)	-0.419(1)	-0.486(1)	0.1085
C28	0.257(3)	-0.378(1)	-0.425(1)	0.1264
C29	0.308(3)	-0.422(2)	-0.372(1)	0.1352
C30	0.308(2)	-0.490(1)	-0.3907(9)	0.1042

TABLE	III
(Continu	ed)

Atom	x/a	y/b	z/c	$U_{\rm iso}$
C31	0.285(2)	-0.528(1)	-0.4361(8)	0.0888
C32	0.088(4)	-0.377(1)	-0.520(2)	0.1577
C33	0.196(5)	-0.348(2)	-0.564(1)	0.1990
C34	-0.009(4)	-0.316(2)	-0.502(2)	0.2367
C35	0.425(2)	-0.534(1)	-0.3371(9)	0.1327
C36	-0.206(2)	-0.497(1)	-0.6874(7)	0.0706
C37	-0.360(2)	-0.526(1)	-0.7040(8)	0.0885
C38	-0.451(3)	-0.472(2)	-0.736(1)	0.1177
C39	-0.459(4)	-0.404(2)	-0.707(2)	0.1383
C40	-0.303(3)	-0.372(1)	-0.692(1)	0.1351
C41	-0.215(2)	-0.426(1)	-0.6543(8)	0.0935
C42	-0.347(2)	-0.597(1)	-0.7350(9)	0.0930
C43	-0.495(2)	-0.639(1)	-0.7339(9)	0.1362
C44	-0.289(2)	-0.598(1)	-0.8001(8)	0.1327
C45	-0.326(3)	-0.305(1)	-0.659(1)	0.1584

another portion (80 mg) of the product. Total yield 420 mg (67%) of the product **8**, m.p. >260 °C (decomp.). For $C_{19}H_{10}CrO_5$ (370.3) calculated: 61.68% C, 2.72% H; found: 61.94% C, 2.91% H. ¹H NMR spectrum (80 MHz): 5.33 t, 2 H (*m*-C₆H₅Cr(CO)₃); 5.75 t, 1 H (*p*-C₆H₅Cr(CO)₃); 6.68 d, 2 H (*o*-C₆H₅Cr(CO)₃); 7.28 s, 1 H (CH); 7.76–8.07 m, 4 H (C₆H₄).

Addition of (-)-Dimenthyl Malonate to Enones 1-8. General Procedure

(-)-Dimenthyl malonate (0.11 g, 0.3 mmol) and the enone (0.3 mmol) were dissolved in toluene (3 ml). Potassium carbonate (0.042 g, 3 mmol) and 18-crown-6 (0.12 g, 0.45 mmol) in toluene (2 ml) were added and the mixture was allowed to stand at the temperature specified in Table I. The course of the reaction was monitored by TLC. When the reaction was over, the reaction mixture was poured into ice water acidified with acetic acid, and the product was extracted with dichloromethane. The extract was washed with saturated NaCl solution and dried over anhydrous MgSO₄. The solution was filtered, the solvent evaporated and the residue chromatographed on an SiO₂ column in ethyl acetate–isohexane (9.5 : 0.5). The products (mixture of diastereomers) were eluted first and the ratio of diastereomers was determined by ¹H NMR spectrum (300 MHz) of the products (vide infra).

In cases when attempts to separate the diastereomers by crystallization failed, a broad m.p. is given. The reaction conditions and results are given in Table I.

(-)-Dimenthyl (3-ferrocenyl-3-oxo-1-phenylpropyl)malonate (1a). For $C_{42}H_{56}FeO_5$ (696.7) calculated: 72.40% C, 8.10% H; found: 72.64% C, 8.18% H. Crystallization from ethyl acetate–isohexane

1812

afforded pure major isomer, m.p. 159–160 °C. ¹H NMR spectrum of the mixture of diastereomers: 0.50–2.00 m, 36 H (menthyl); 3.00–3.28 m, 2 H (CH₂CO); 3.85–3.90 dd, 1 H (CH(COO)₂); 4.12–4.25 m, 1 H (CHPh); 4.45–4.55 m, 1 H (CHO); 4.71–4.82 m, 1 H (CHO); 4.42 t, 2 H (H_β-Cp); 4.69 t, 2 H (H_α-Cp); 7.15–7.40 m, 5 H (C₆H₅). Major isomer: 3.95 s, 3.2 H (Cp); minor isomer 3.90 s, 1.8 H (Cp). (*–)-Dimenthyl* (*3-oxo-1-phenyl-3-*(η^6 *-phenyltricarbonylchromium)propyl)malonate* (**3a**). For C₄₁H₅₂CrO₈ (724.8) calculated: 67.94% C, 7.23% H; found: 68.11% C, 7.12% H. M.p. 138–155 °C. ¹H NMR spectrum of mixture of diastereomers: 0.40–2.00 m, 36 H (menthyl); 3.20–3.30 m, 2 H (CH₂CO); 3.79–3.82 dd, 1 H (CH(COO)₂); 4.05–4.17 m, 1 H (CHPh); 4.45–4.57 m, 1 H (CHO);

TABLE IV Bond lengths for compound **5a**

Atoms	Distances	Atoms	Distances
O1–C7	1.32(2)	C20–C21	1.39(2)
O1–C36	1.48(2)	C21–C22	1.39(3)
O2–C25	1.35(2)	C22–C23	1.35(4)
O2–C26	1.43(2)	C23–C24	1.38(3)
O3–C25	1.19(2)	C26–C27	1.49(2)
O4–C11	1.19(1)	C26–C31	1.50(2)
O5–C18	1.20(1)	C27–C28	1.51(2)
O6–C7	1.18(2)	C27–C32	1.51(3)
C7–C8	1.49(2)	C28–C29	1.51(3)
C8–C9	1.52(2)	C29–C30	1.50(3)
C8-C25	1.51(2)	C30–C31	1.49(2)
C9–C10	1.56(2)	C30–C35	1.50(3)
C9–C19	1.55(2)	C32–C33	1.47(3)
C10–C11	1.52(2)	C32–C34	1.51(3)
C10-C18	1.52(2)	C36–C37	1.51(2)
C11–C12	1.49(2)	C36–C41	1.54(2)
C12–C13	1.36(2)	C37–C38	1.48(3)
C12–C17	1.37(2)	C37–C42	1.51(2)
C13-C14	1.36(2)	C38–C39	1.45(4)
C14–C15	1.39(2)	C39–C40	1.53(4)
C15-C16	1.39(2)	C40–C41	1.53(2)
C16–C17	1.36(2)	C40–C45	1.48(3)
C17–C18	1.47(2)	C42–C43	1.54(3)
C19–C20	1.37(2)	C42–C44	1.52(2)
C19–C24	1.35(2)		

4.75–4.85 m, 1 H (CHO); 5.19–5.25 m, 2 H (m-C₆H₅Cr(CO)₃); 5.63 t, 1 H (p-C₆H₅Cr(CO)₃); 6.03 t, 1 H (o-C₆H₅Cr(CO)₃); 6.12–6.18 t, 1 H (o-C₆H₅Cr(CO)₃); 7.15–7.40 m, 5 H (C₆H₅).

(-)-Dimenthyl (1-(4-methoxyphenyl)-3-oxo-3-(η^{6} -phenyltricarbonylchromium)-3-propyl)malonate (4a). For C₄₂H₅₄CrO₉ (754.9) calculated: 66.83% C, 7.21% H; found: 68.64% C, 7.58% H. M.p. 128–141 °C. ¹H NMR spectrum of mixture of diastereomers: 0.40–2.00 m, 36 H (menthyl); 3.06– 3.33 bt, 2 H (CH₂CO); 3.73–3.76 dd, 1 H (CH(COO)₂); 3.97–4.09 m, 1 H (CHPh); 4.46–4.55 m, 1 H (CHO); 4.69–4.82 m, 1 H (CHO); 5.20 t, 2 H (m-C₆H₅Cr(CO)₃); 5.61 t, 1 H (p-C₆H₅Cr(CO)₃); 6.05 t, 2 H (o-C₆H₅Cr(CO)₃); 6.77 d, 2 H, J = 8 Hz (C₆H₄); 7.16 d, 2 H, J = 8 Hz (C₆H₄). Major isomer: 3.73 s, 2.4 H (OCH₃); minor isomer 3.75 s, 0.6 H (OCH₃).

(-)-Dimenthyl 1-(1,3-dioxoindan-2-yl)-1-phenylmethylmalonate (**5a**). For $C_{39}H_{50}O_4$ (582.8) calculated: 80.37% C, 8.64% H; found: 80.68% C, 8.74% H. Repeated crystallization from toluene afforded pure major isomer, m.p. 151–152 °C, $[\alpha]_D$ –90° (toluene). ¹H NMR spectrum of mixture of diastereomers: 0.40–2.00 m, 36 H (menthyl); 4.35–4.45 m, 1 H (CHO); 4.69–4.77 m, 1 H (CHO); 7.00–7.90 m, 9 H (C₆H₅ + C₆H₄). Major isomer: 3.66 d, 0.67 H, *J* = 3.8 Hz (CH(COO)₂); 4.37 t, 0.66 H, (CHPh); 4.75 d, 0.67 H, *J* = 12.4 Hz (CH(CO)₂). Minor isomer: 3.74 d, 0.33 H, *J* = 3.8 Hz (CH(COO)₂); 4.25 t, 0.33 H (CHPh); 4.79 d, 0.33 H, *J* = 6.9 Hz (CH₃); 0.65 d, 3 H, *J* = 7 Hz (CH₃); 0.70 d, 3 H, *J* = 6.9 Hz (CH₃); 0.79 d, 3 H, *J* = 6.6 Hz (CH₃); 0.85 d, 3 H, *J* = 6.5 Hz (CH₃); 0.87 d, 3 H, *J* = 6.9 Hz (CH₃); 0.67–0.88 m, 3 H (menthyl); 0.97–1.57 m, 10 H (menthyl); 1.62–1.69 m, 3 H (menthyl); 1.85–1.93 m, 2 H (menthyl); 3.64 d, 1 H, *J* = 3.9 Hz (CH(COO)₂); 4.31–4.34 dd, 1 H, *J*₁ = 12.4 Hz, *J*₂ = 3.9 Hz (CHPh), 4.35–4.40 dt, 1 H, *J*₁ = 10.9 Hz, *J*₂ = 4.5 Hz (CHO); 4.68–4.74 m, 1 H (CHO); 4.72 d, 1 H, *J* = 12.4 Hz (CH(CO)₂); 6.99–7.05 m, 3 H, (*o*- and *p*-C₆H₅); 7.14–7.16 m, 2 H (*m*-C₆H₄); 7.85–7.87 ddd, 1 H, *J*₁ = 7.5 Hz, *J*₂ = 1.4 Hz, *J*₂ = 0.7 Hz (*o*-C₆H₄);

(-)-Dimenthyl 2-(1-(1,3-dioxo[3][ferrocenophan-2-yl)-1-phenyl)malonate (**6a**). For C₄₆H₅₄FeO₆ (722.7) calculated: 71.46% C, 7.53% H; found: 71.99% C, 7.75% H. Crystallization from ethyl acetate-isohexane afforded pure major isomer, m.p. 218.5–220.5 °C. ¹H NMR spectrum of mixture of diastereomers: 0.52–1.90 m, 36 H (menthyl); 4.21 m, 0.4 H (H_β-Cp); 4.41 m, 0.6 H (H_β-Cp); 4.41 m, 2 H (H_α-Cp); 4.48–4.70 m, 6 H (3 × H-Cp, CHPh, 2 × CHO); 7.15–7.50 m, 5 H (C₆H₅). Major isomer: 4.18 d, 0.7 H, J = 7.9 Hz (CH(COO)₂); 5.33 d, 0.7 H, J = 9.7 Hz (CH(CO)₂); minor isomer: 4.04 d, 0.3 H, J = 7.6 Hz (CH(COO)₂); 5.42 d, 0.3 H, J = 9.2 Hz (CH(CO)₂).

(-)-Dimenthyl 3-ferrocenyl-3-oxo-1-(η^6 -phenyltricarbonylchromium)propylmalonate (7**a**). For C₄₅H₅₆CrFeO₈ (832.8) calculated: 64.90% C, 6.78% H; found: 65.37% C, 6.27% H. M.p. 70–78 °C. ¹H NMR spectrum of mixture of diastereomers: 0.40–2.00 m, 36 H (menthyl); 3.75 m, 1 H (CHC₆H₅Cr(CO)₃); 4.51 m, 2 H (H_β-Cp); 4.61–4.86 m, 5 H (2 × H_α-Cp, 2 × CHO, CH(CO)₂); 5.16 m, 2 H (*m*-C₆H₅Cr(CO)₃); 5.40 m, 1 H (*p*-C₆H₅Cr(CO)₃); 5.76 d, 1 H (*o*-C₆H₅Cr(CO)₃); 5.79 d, 1 H (*o*-C₆H₅Cr(CO)₃). Major isomer: 4.21 s, 2.6 H (C₅H₅); 4.09 d, 0.55 H, *J* = 5 Hz (CH(COO)₂); minor isomer: 4.22 s, 2.4 H (C₅H₅); 4.01 d, 0.45 H, *J* = 5 Hz (CH(COO)₂).

(-)-Dimenthyl 1-(1,3-dioxoindan-2-yl)-1-(η^6 -phenyltricarbonylchromium)methyl malonate (**8a**). For C₄₂H₅₀CrO₉ (750.8) calculated: 67.18% C, 6.72% H; found: 66.81% C, 6.88% H. M.p. 74–82 °C. ¹H NMR spectrum of mixture of diastereomers: 0.50–1.90 m, 36 H (menthyl); 3.70 bt, 1 H (CHPh); 3.94–4.01 m, 1 H (CHO); 4.01–4.18 m, 1 H (CHO); 5.14 m, 2 H (m-C₆H₅Cr(CO)₃); 4.75 m, 1 H (p-C₆H₅Cr(CO)₃); 5.22–5.29 m, 1 H (o-C₆H₅Cr(CO)₃); 5.37 m, 1 H (o-C₆H₅Cr(CO)₃); 7.77–8.07 m, 4 H (C₆H₄). Major diastereomer: 5.77 d, 0.66 H, *J* = 6 Hz (CH(COO)₂); 6.13 d, 0.66 H, *J* = 6 Hz (CH(CO)₂); minor diastereomer: 5.63 d, 0.33 H, *J* = 4 Hz (CH(COO)₂); 5.97 d, 0.33 H, *J* = 6 Hz (CH(CO)₂).

Our thanks are due to Dr E. Greiplova and Dr E. Solcaniova for the microanalyses and 80 MHz NMR measurements, respectively. The financial support by Slovak Ministry of Education (Grant No. 1/1443/94) is acknowledged.

REFERENCES

- 1. Gajda V., Widhalm M., Toma S.: Monatsh. Chem. 120, 147 (1989).
- 2. Sebo L., Sraga J., Rihs G., Toma S.: Collect. Czech. Chem. Commun. 59, 2621 (1994).
- 3. Hoeve W. T., Wynberg M.: J. Org. Chem. 45, 2754 (1980).
- 4. Davies S. G., Coote S. J., Goodfellow C. L.: Adv. Metal. Org. Chem., Vol. 2, p. 1. JAI Press, London 1991.
- 5. Solladie-Cavallo A., Suffert J., Farkhami D.: Ann. Chim. 9, 683 (1984).
- 6. Albert J., Davies S. G.: Tetrahedron Lett. 30, 5945 (1989).
- 7. Tirouflet J., Boichard J.: C. R. Acad. Sci. 250, 1861 (1960).
- 8. Federic J., Toma S., Gautheron B.: J. Organomet. Chem. 338, 211 (1988).
- 9. Radulescu D., Georgescu V.: Bull. Soc. Chim. Fr. 37, 1969 (1925).
- 10. Salisova M., Toma S., Solcaniova E.: Collect. Czech. Chem. Commun. 45, 1290 (1980).
- 11. Martin N., Martinez-Gran A., Seoane C.: Tetrahedron Asym. 5, 1435 (1994).